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Biological context

Protein deamidation, the hydrolysis of side chain amido

groups of protein-bound glutaminyl or asparaginyl residues

to release ammonia, has received focused attention espe-

cially in food industries since protein deamidation is

regarded as a promising method to improve functional

properties of food proteins. Deamidation generally

decreases an isoelectric point of proteins due to increase in

number of negatively charged carboxyl groups and

enhances protein solubility. In addition, deamidation leads

to alteration of the tertiary structures of proteins with an

improved amphiphilic character that is useful as an emul-

sifier or a foaming agent. Therefore, deamidation of food

proteins have been investigated by various methods

including mild acid treatment, anion-catalyzed deamida-

tion, dry heating under mild alkaline conditions, and ther-

mal treatment. Although deamidation by these treatments

improved protein functionalities, there were undesired

side-effects, such as concomitant peptide bond cleavages,

that were unavoidably brought about by the chemical/

physical treatments. Therefore, enzymatic methods have

advantages due to their selectivity and mild treatments. The

possibilities of the use of transglutaminases, peptidogluta-

minases, and proteases have been explored for this purpose.

These enzymes, however, are not suitable because the

primary catalytic reactions of transglutaminases and pro-

teases are not deamidation itself, and primary substrates of

peptidoglutaminases are not proteins.

Protein-glutaminase (PG) is an enzyme produced from the

microorganism Chryseobacterium proteolyticum strain

9670 (Yamaguchi et al. 2001). PG catalyzes only the

deamidation of the side chain amido group of protein-bound

glutaminyl residues to release ammonia without catalyzing

the transglutamination and hydrolysis of asparaginyl resi-

dues or producing other undesirable changes in protein

structures. PG is a monomeric single polypeptide with

pI = 10.0 and a molecular weight of 19,860 and is synthe-

sized as a prepro-form, containing a 21-amino-acid signal

polypeptide, a 114-amino acid pro-region, and a sequence

for the mature enzyme. PG with the pro-region (pro-PG) has

no enzymatic activities, but when pro-PG is removed by an

extracellular protease, an active enzyme is produced in

C. proteolyticum. However, the amount of PG produced by

C. proteolyticum is too small to be used for industrial

application that limits the application of PG to deamidation

of food proteins.

Recently, we have constructed the high expression system

of PG with Corynebacterium glutamicum, which enables us

to prepare an amount of stable-isotope labeled PG for NMR

experiments (Kikuchi et al. 2009). Here, we report the

solution structure of mature PG determined by NMR and

discuss the catalytic mechanism of PG on the structural basis.

Materials and methods

NMR spectroscopy

15N and 13C/15N labeled PG were expressed and purified as

described previously (Shinagawa et al. 2005). A suite of

H. Kumeta � K. Ogura � F. Inagaki (&)

Laboratory of Structural Biology, Graduate School

of Pharmaceutical Sciences, Hokkaido University,

Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan

e-mail: finagaki@pharm.hokudai.ac.jp

N. Miwa � Y. Kai � T. Mizukoshi � N. Shimba � E. Suzuki

Institute of Life Sciences, Ajinomoto Co., Inc., 1-1 Suzuki-cho,

Kawasaki-ku, Kawasaki-shi 210-8681, Japan

123

J Biomol NMR (2010) 46:251–255

DOI 10.1007/s10858-010-9399-7



two- and three-dimensional NMR experiments was per-

formed on Varian UNITY inova spectrometers operating at

800 and 600 MHz at 25�C. Spectra were processed using

NMRPipe (Delaglio et al. 1995) and data analysis was

performed with the help of the Sparky program (Goddard

and Kneller 1997). 1H, 13C and 15N resonance assignments

were carried out using the following set of spectra; 1H–15N

HSQC, 1H–13C HSQC, HN(CO)CA, HNCA, CBCA(CO)

NH, HNCACB, HNCO, HBHA(CO)NH, HN(CA)HA,

HC(C)H-TOCSY, (H)CCH-TOCSY, HbCbCgCdHd, and

HbCbCgCdCeHe. Interproton distance restraints were

obtained using 15N-edited and 13C-edited NOESY-HSQC

spectra using a 75 ms mixing time. Dihedral angle

restraints were obtained from the chemical shift values

using the TALOS program (Cornilescu et al. 1999).

Structural calculation

The structure was calculated using the CYANA 2.1 soft-

ware package (Herrmann et al. 2002). As an input for the

final calculation of the three-dimensional structure of PG, a

total of 4,252 distance and 232 angle restraints were used

(Table 1). At each stage, 100 structures were calculated

using 30,000 steps of simulated annealing, and a final

ensemble of 20 structures was selected based on CYANA

target function values. The atomic coordinates have been

deposited in the Protein Data Bank (PDB code: 2KSV).

Results and discussion

1H–15N HSQC spectrum of PG was well-dispersed as

shown in Fig. 1A. Almost all of the resonances were

assigned using a suite of conventional NMR spectra. The

structure of PG was calculated using the CYANA 2.1

software package (Herrmann et al. 2002) based on the in-

terproton distance restraints and dihedral angle restraints.

The overlay of the 20 structures and the ribbon model of

the lowest energy structure are shown in Fig. 1B, C. The

PG formed a single, compact domain which comprises a

large curved b-sheet (b1; 197–207, b2; 211–226, b3; 233–

237, b4; 246–248, b5; 265–272), a small b-sheet (b6; 277–

280, b7; 284–287), and four a-helices (a1; 143–156, a2;

177–191, a3; 250–256, a4; 292–301). The three a-helices

(a1, a2 and a4) and the small b-sheet were located on one

side of the large curved b-sheet, while a3 was located on

the opposite side. An initial structural similarity search,

performed with the calculated coordinates of PG using the

DALI server (Holm et al. 2008), showed that PG has

moderate structural similarity to the catalytic core domain

of TGs (human TGase3; 1L9N, factor XIII; 1GGY and

1GGT, fish TGase; 1G0D), thiol proteinase-like domain of

Pasteurella multacida toxin (2EBH) and mushroom lectin

(2IHO) with Z-score 4.5–6, although they have low

sequence homology (about 10%).

Since the catalytic activity of PG was inhibited by

iodoacetamide, the catalytic center of PG was considered

to be a cysteine residue (Yamaguchi et al. 2001). PG

contains 11 Cys residues (C158, C167, C177, C195, C211, C212,

C256, C261, C296, C307, and C318). Considering both from

the chemical shifts of b-carbons of cysteine residues and

the calculated structure, four disulfide linkages can be

assigned (C158–C167, C211–C307, C212–C261, and C296–C318)

but there are three free cysteine residues (C177, C195, and

C256) (Fig. 1C). The thiol group of C177 is exposed to the

molecular surface, while those of C195 and C256 are buried.

Further inspection of the DALI search revealed that the

region encircled in Fig. 2A–E are similar so that the DALI

search was applied again to the encircled region. The

structures were well overlapped as are shown in Fig. 2F.

Intriguingly, C177, H218 and D238 in PG are overlayed

similarly with the catalytic triads in the DALI structural

homologs including TGase3, factor XIII, FTG, thiol pro-

tease-like domain of Pasteurella multacida toxin (Fig. 2F)

and thus these residues can be assigned to the catalytic triad

in PG, but further biochemical studies are required.

Although PG catalyzes only protein-deamidation,

transglutaminase (TG) catalyzes both protein-deamidation

and protein cross-linking reactions. Therefore, it is

intriguing to compare the structures of PG and TG from

microbials to elucidate the difference in catalytic mecha-

nism on the structural basis. A microbial TG (MTG) is

comprised of 331 amino acids with a molecular mass of

37.9 kDa (Ando et al. 1989). MTG forms a single, compact

domain (Kashiwagi et al. 2002), whereas other TGs form

four domains (Noguchi et al. 2001; Yee et al. 1994). The

Table 1 Structural statistics of the PG

NOE distance constraints 4,252

Short range (intraresidue and sequential) 2,109

Medium range (2 B |i - j| B 4) 716

Long range (|i - j| [ 4) 1,427

Number of violations

Distance [0.3 Å 1

Angle [5� 0

Structural coordinates rmsd (Å) (range 141–315)

Backbone atoms 0.34

All heavy atoms 0.59

Ramachandran plot

Most favored regions 77.3%

Additionally allowed regions 22.1%

Generously allowed regions 0.6%

Disallowed regions 0%
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electrostatic surface potential representations of PG and

MTG are shown in Fig. 3A, B, respectively. In PG, the

surface around the C177 residue forms a shallow cleft that

may be a substrate-binding site. The C177 residue is located

in the negatively-charged pocket of this cleft. The depth of

the pocket is *6Å, which fits the length of a glutaminyl

side chain but not the length of an asparaginyl side chain.

Thus, once the amido group in a glutaminyl residue is

hydrolyzed, the resulting carboxylate group is expelled

from the negatively-charged pocket, thus accelerating the

turnover of the products. The left side of the pocket pre-

sents hydrophobic and slightly negatively-charged surface

(Fig. 3A). The specificity of PG using several short peptide

substrates showed that PG prefers hydrophobic residues at

the N-terminal side of the glutaminyl residue (Yamaguchi

et al. 2001). This preference might be due to hydrophobic
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Fig. 1 A [1H–15N] HSQC

spectrum of PG. B Overlay of

the ensemble of 20 final energy-

minimized CYANA structures

in stereo The main and side

chains are shown in black and

cyan, respectively. C Ribbon

diagrams of the lowest energy

structure. Cys-residues are

shown in stick model. The

structures were drawn using

PyMOL (http://www.pymol.

org/)
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interaction between this surface and a substrate. In contrast,

MTG has a deep cleft with a shallow negatively-charged

pocket, where the catalytic cysteine is located. There are

vestibules on the right and left sides of the deep cleft that

presents a negatively-charged and hydrophobic surfaces,

respectively (Fig. 3B). These vestibules would correspond

to an acyl donor and an acyl acceptor binding sites

(Kashiwagi et al. 2002). Other TGs similarly contain acyl

donor and acceptor binding sites. The amido groups of the

substrate glutaminyl residue is hydrolyzed, the carboxylate

group may be captured in the deep cleft and transferred to

an acyl acceptor of a substrate protein.

In conclusion, the solution structure of PG was deter-

mined by NMR. The catalytic cysteine residue of PG was

located at the deep negatively-charged pocket in the shal-

low cleft which prefers the glutaminyl residue as a sole

substrate. In contrast to MTG, PG has no binding site for an

acyl donor protein, thus expels the resulting glutamyl res-

idue from the negatively-charged pocket. This enables PG

to have an efficient turnover of substrates.
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